Active Roof System Concept Generation and Selection

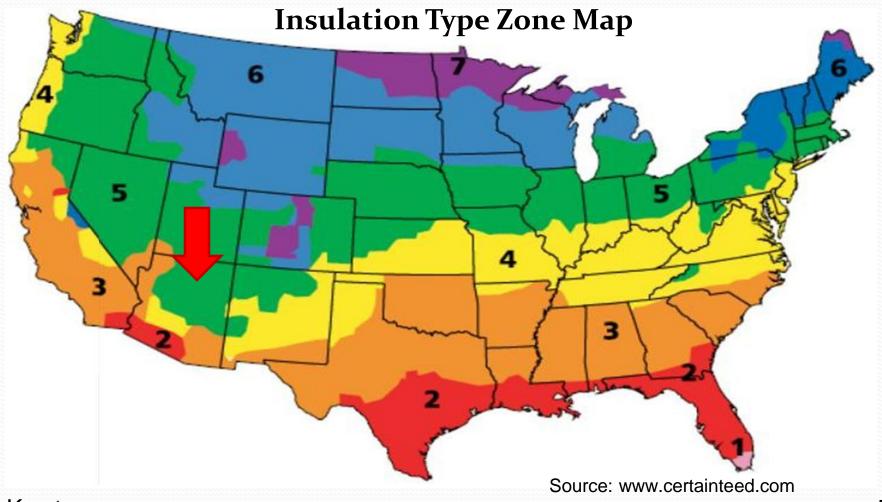
Mohammed Alkhaldi, Coy Cody, Donovan Hard, Marissa Munson and Krysten Whearley

November 4th, 2013

Overview

- Brief Project Description
- Brief Description of Three Prototype Designs
- Design Requirements
 - For All Prototypes
 - For Only Passive Prototype
 - For Only Active Prototype
- Internal Temperature Measurements
- Internal Heating and Cooling System
- Control Systems
- Changes to Timeline and Progress
- Conclusions

Project Introduction


- Problem
 - The amount of power usage to keep the interior of large buildings at a comfortable, cool temperature is too high.
- Project Description
 - Project will investigate roof designs that will lower this power consumption.

Three Roof System Prototypes

- Passive Roof ~ Stationary Panels
- Active Roof ~ Solar Tracking Panels
- Control Roof ~ Plain White Roof

- For all Prototypes:
 - Scaled to (smallest) Wal-mart Building
 - Chosen due to size limitations on Prototypes
 - Interior Dimensions
 - 30,000 sq ft (approx. 173.2ft x 173.2ft)
 - 25ft ceilings

- Scaling Factor dependent on
 - Insulation material for model
 - Smallest thickness possible
 - Thermal resistance (R value)
 - Ability to reduce heat transfer

Krysten

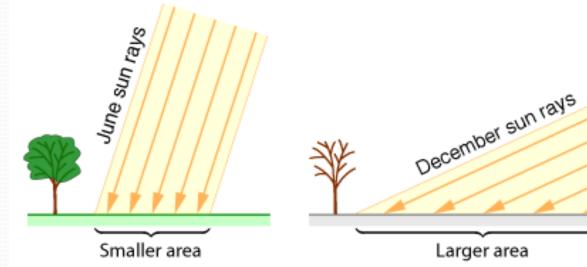
Insulation Type Zone Chart

Zone	Heating System		Cathedral	W			
		Attic	Ceiling	Cavity	Insulation Sheathing	Floor	
All		R30 to R49	R22 to R15	R13 to R15	None	R13	
2	Gas, oil, heat pump Electric furnace	R30 to R60	R22 to R38	R13 to R15	None	R13 R19-R25	
3	Gas, oil, heat pump Electric furnace	R30 to R60	R22 to R38	R13 to R15	None R2.5 to R5	R25	
4	Gas, oil, heat pump Electric furnace	R38 to R60	R30 to R38	R13 to R15	R2.5 to R6 R5 to R6	R25 to R30	
5	Gas, oil, heat pump Electric furnace	R38 to R60	R30 to R38 R30 to R60	R13 to R15 R13 to R21	R2.5 to R6 R5 to R6	R25 to R30	
6	All	R49 to R60	R30 to R60	R13 to R21	R5 to R6	R25 to R30	
7	All	R49 to R60	R30 to R60	R13 to R21	R5 to R6	R25 to R30	
8	All	R49 to R60	R30 to R60	R13 to R21	R5 to R6	R25 to R30	

Krysten

Source: www.certainteed.com

- Estimate Walmart Insulation
 - Walls R14 (3.5 in thick)
 - Ceiling R34
 - Floors R27
- Prototype Insulation Selected
 - Cork (Roll)
 - Thickness = 3/32 inch
 - R value approx. = 3.6 per inch
 - Our R value = 0.3375


Approximated Prototype Dimensions

Interior Dimensions: 4.5ft x 4.5ft x 0.65ft

 Using dimension scale of
 (3/32in)/3.5in = 0.026
 Using R scale of
 0.3375/14 = 0.024

- For all Prototypes:
 - Must include heating/cooling system
 - Use to keep interior constantly at 70 F
 - Be able to measure power consumption
 - Measure/Record Interior Temperature
 - Every 10 min
 - Without opening Prototype

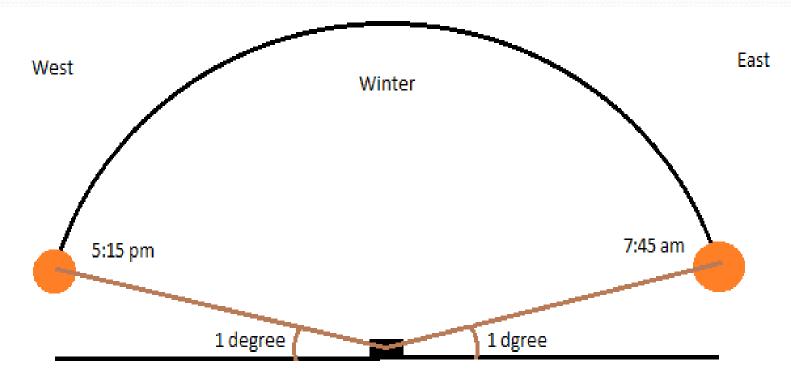
- For Only Passive Prototype:
 - Reflective Panels must be at optimum angle
 - Angled to allow reflection in summer and absorption in winter

Source: http://physics.weber.edu

- Also based on latitude of location
 - Flagstaff latitude: 35.1992° N
 - Average sun angles between:
 - Spring and Summer: 66.5508°
 - Fall and Winter: 43.0508°

Recommended passive panel angel: 43°

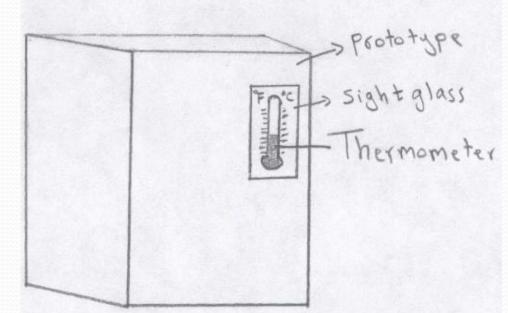
- Sun moves from a southern position to a more northern position from winter to summer
 - Panels should be pointed at a southeastern angle for winter absorption


- For Only Active Prototype:
 - Reflective Panels must rotate automatically to correct angle throughout the day
 - Angle to allow reflection in summer and absorption in winter
 - Based on Flagstaff latitude: 35.1992° N

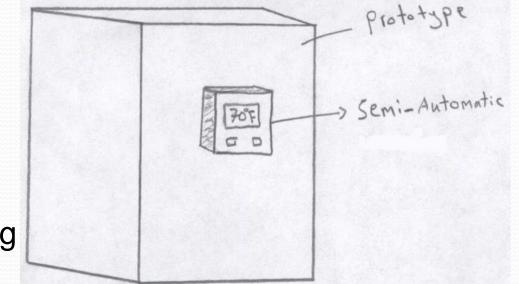
 Average Sunrise and Sunset Times for each Season Based on Flagstaff

Season	Average Sunrise Time	Average Sunset Time			
Winter	7:45 am	5:15 pm			
Spring	6:45 am	6:30 pm			
Summer	5:20 am	7:30 pm			
Fall	6:20 am	6:20 pm			

Mohammed


Ex. Sunrise and Sunset Angle Based on Flagstaff

Source: http://www.susdesign.com/sunangle


Mohammed

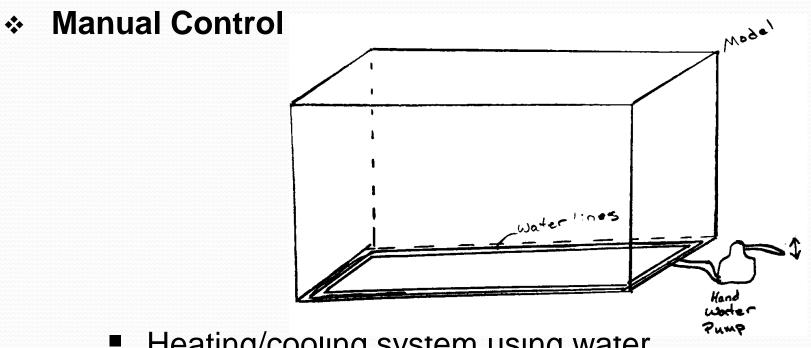
- Manual Data
 - > Advantage
 - Inexpensive
 - Disadvantage
 - Not accurate
 - Time consuming

 Manually read and record internal thermostat temperature

- * Semi-Automatic
 - Advantage
 - Accurate
 - Inexpensive
 - Disadvantage
 - Time comsuming

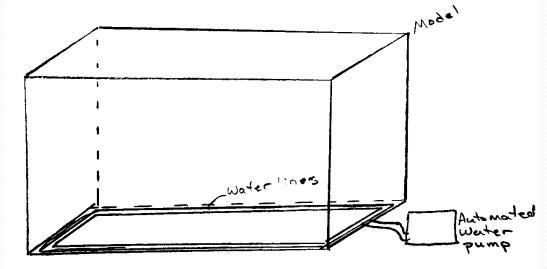
 Use device that constantly reading temperature & manually record

- Fully Automatic
 - Advantage
 - Accurate
 - Disadvantage
 - Expensive

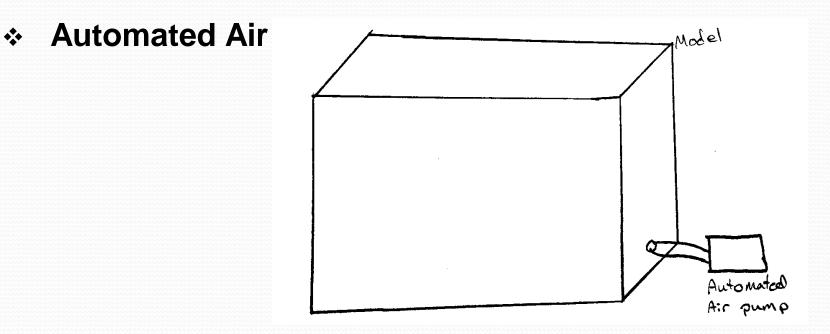

 Use device that can be programmed to read and record the temperature

- Internal Temperature Measurements Decision Matrix Criteria
 - Accuracy
 - Ease of Construction
 - Response Time
 - Cost
 - Automatic Data Output

Mohammed


• Internal Temperature Measurements Decision Matrix

		Designs					
Criteria	Weight	Manual Data	Semi-Automatic	Fully Automatic			
Accuracy	9	4x9 = 36	9x9 = 81	10x9 = 90			
Ease of Construction	7	7x7 = 49	5x7 = 35	7x7 = 49			
Response Time	4	5x4 = 20	7x4 = 28	10x4 = 40			
Cost	10	9x10 = 90	6x10 = 60	4x10 = 40			
Automatic Data Output	8	0x8 = 0	7x8 = 56	10x8 = 80			
	TOTAL	195	260	299			



- Heating/cooling system using water
- Manually controlled by and pump or crank

Automated Water

- Automated heating/cooling system using water
- Programmed device controls heating/cooling

- Automated heating/cooling system using air
- Program device to pump hot/cold air
- Similar to A/C

Donovan

- Internal Heating and Cooling System Decision Matrix Criteria
 - Accuracy
 - Ease of Use
 - \circ Efficiency
 - Cost
 - Data Collections

Donovan

• Internal Heating and Cooling System Decision Matrix

		Designs					
Criteria	Weight	Hand Pump	Water Pump	Air Flow			
Accuracy	7	4x7 = 28	9x7 = 63	10x7 = 70			
Ease of Use	6	6x6 = 36	8x6 = 48	8x6 = 48			
Efficiency	6	3x6 = 18	8x6 = 48	10x6 = 60			
Cost	10	3x10 = 30	6x10 = 60	8x10 = 80			
Data Collections	8	0x8 = 0	7x8 = 56	9x8 = 72			
	TOTAL	112	275	330			

Control Systems

- Two arduino board control systems
 - 1 ~ Programmed to turn on and off a motor that will rotate the refective panels on active roof design
 - Panels will be attached on one shaft mechanism and a motor will rotate them simultanteous
 - 2 ~ Recieves interior temperature measurements and switiching on or off the heating or cooling system accordingly.

Control Systems Cont.

- Benefits:
 - Easy to connect
 - Easy to program
 - Inexpensive

Changes to Timeline and Progress

Detailed Fall Timeline (Design & Initial Construction)

	Weeks								
Task Name	1	2	3	4	5	6	7	8	9
Design Phase									
* Design Research									
* Design Prototypes									
* Final Design Selections				\diamond					
Design Analysis									
* Estimated Cost of Prototypes									
* Heat Transfer Analysis									
Experimental Construction									
* Heating/Cooling System									
* Active Roof System									
Finalizing the Designs							•		
* CAD drawings of Prototypes									
* Submit Final Prototype Designs									\diamond

Conclusions

- Building 3 prototype based on small Wal-mart size
 - Each will have different roof design: Active, Passive, Control
 - Interior Dimensions: 4.5ft x 4.5ft x 0.65ft
 - Scale factor based on chosen prototype insulation
 - 3/32 inch Cork
- For passive roof system
 - Recommended panel angel: 43°

Conclusions Cont.

- For active roof system
 - Based on Flagstaff's
 - Angle of sunrise and sunset
 - Average time for sun rise and set for each season
- Plan to use these internal systems
 - Internal Temperature Measurement System
 - Fully-Automatic temperature recorder
 - Heating and Cooling System
 - Automated Air

References

- "R-value," Wikipedia, 2 10 2013. [Online]. Available: http://en.wikipedia.org/wiki/Rvalue_%28insulation%29#Different_insulation_types. [Accessed 26 10 2013].
- M. Shaffer, Interviewee, *Project Intro and Passive/Active Roof Designs*. [Interview]. 22 October 2013.
- "Wal-Mart Stores Inc (WMT.N)," Reuters, [Online]. Available: http://www.reuters.com/finance/stocks/companyProfile?symbol=WMT.N. [Accessed 26 10 2013].
- A. Wilson, "Expanded Cork The Greenest Insulation Material?," BuildingGreen.com, 2013. [Online]. Available: http://www2.buildinggreen.com/blogs/expanded-cork-greenest-insulationmaterial. [Accessed 26 10 2013].
- "Cork Products," Hobby Lobby, 2013. [Online]. Available: http://shop.hobbylobby.com/products/24-light-cork-roll-987420/. [Accessed 22 10 2013].

References Cont.

- "30-49-109 Insulation Guide.pdf," 08 2009. [Online]. Available: http://www.certainteed.com/resources/30-49-109%20Insulation%20Guide.pdf. [Accessed 26 10 2013].
- J. Lochner, "Ask an Astrophysicist," nasa.gov, 1997, [Online]. Available: http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/970210b.html [Accessed 27 10 2013]
- D. Shroeder, "The sun and the Seasons," weber.edu, 2011, [Online]. Available: http://physics.weber.edu/schroeder/ua/SunAndSeasons.html [Accessed 25 10 2013]
- MicroDAQ, The DataLogger Store, [online] 2013, Available: http://www.microdaq.com/ [Accessed 22 October 2013]
- SunPosition, SunPosition calculator, [online] 2013, Available: http://www.sunposition.info/sunposition/spc/locations.php [Accessed 22 October 2013]

References Cont.

- C. Gronbeck, "SunAngle," Sustainable by Design, 2009. [Online]. Available: http://www.susdesign.com/sunangle/. [Accessed 27 10 2013].
- J. Lochner, "Ask an Astrophysicist," nasa.gov, 1997, [Online]. Available: http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/970210b.html [Accessed 27 10 2013]
- D. Shroeder, "The sun and the Seasons," weber.edu, 2011, [Online]. Available: http://physics.weber.edu/schroeder/ua/SunAndSeasons.html [Accessed 25 10 2013]
- University of Applied Sciences Potsdam, "Temperature sensor using TMP102," Fritzing Beta, 2011. [Online]. Available: http://fritzing.org/projects/temperature-sensor-using-tmp102. [Accessed 27 10 2013].
- Automatic Temperature Control, "Automatic Temperature Control," [Online]. Available: http://www.autotempcontrols.com/test123/. [Accessed 26 10 2013].